Cluster-Separated Classification Approach for Gene Expression Analysis
نویسندگان
چکیده
منابع مشابه
SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملCluster Analysis of Gene Expression Data
The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample—such as tissue extracted from a particular tumor. The results of such an experiment co...
متن کاملCluster analysis of gene expression dynamics.
This article presents a Bayesian method for model-based clustering of gene expression dynamics. The method represents gene-expression dynamics as autoregressive equations and uses an agglomerative procedure to search for the most probable set of clusters given the available data. The main contributions of this approach are the ability to take into account the dynamic nature of gene expression t...
متن کاملCluster Analysis of Gene Expression Data
Important insights into gene function can be gained by gene expression analysis. For example, some genes are turned on (expressed) or turned off (repressed) when there is a change in external conditions or stimuli. The expression of one gene is often regulated by the expression of other genes. A detail analysis of gene expression information will provide an understanding about the inter-network...
متن کاملGene-set approach for expression pattern analysis
Recently developed gene set analysis methods evaluate differential expression patterns of gene groups instead of those of individual genes. This approach especially targets gene groups whose constituents show subtle but coordinated expression changes, which might not be detected by the usual individual gene analysis. The approach has been quite successful in deriving new information from expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Baltic Journal of Modern Computing
سال: 2019
ISSN: 2255-8950
DOI: 10.22364/bjmc.2018.7.1.05